
Hack.lu 2015 • Call For Paper Submission

How not to build an evoting system

Quentin Kaiser

contact@quentinkaiser.be

Abstract

Back in 1994, Belgium was one of the first european country to push for the deployment of electronic
voting systems. Thought at the time as a sign of Belgium stepping foot in the 21st century, the system
stayed in use up to the latest european elections that took place in May 2014. As years passed, bugs got
discovered, issues were raised, and public concern grew up to the point where the government was obliged
by law to publish the source code of those systems in 2001[8]. We jumped on the opportunity to audit the
code in June 2014, looking at the internals and seeing for ourselves what was really going on. By auditing
the source code provided by the Ministry of Home Affairs, we found multiple vulnerabilities in the system
that could easily be exploited by an attacker to tamper with the election process.

I. Introduction

It’s been more than 20 years since the first elec-
tronic voting system boot up in the small city
of Flemalle, Belgium. During all those years,
the only external audits came from Affront[1]
and the PourEVA association[9, 7, 10]. This
can be explained by the tremendous amount
of code that composes this system, along with
the fact that specialiazed hardware on which
this code runs is not available to the public.

When one of the most important part of
democratic elections is transparency, how does
one achieve this without access to the source
code ? Even more, how does one achieve this
when missing the necessary technical skills ?
In those cases, the citizen is left to trust blindly
the third parties that his government task to
audit the code that runs the elections.

Compared to previous audits that focused
only on static code analysis, we decided to take
a new approach that consider the link between
all systems and see how small errors in those
different systems could lead to serious vulner-
abilities, when linked together.

Our analysis start at the polling stations
by looking at the software running on voting
booth and ballot box machines. We then follow
the votes by going through the PGM programs,
finally concluding with the Election Manage-
ment System.

Summary of Contributions First of all, our
analysis helped to cast a light on the debate
about electronic voting. By helping the investi-
gation of Medor journalists[5], we were able to
restart the public debate about electronic vote
in Belgium which led to the decision of the
Walloon Parliament to remove their support of
electronic voting systems[4].

Second, by discovering and responsibly dis-
closing vulnerabilities found in the web appli-
cations developed by Stesud, we helped secure
their own system and brought a reflexion about
information security within the ranks of that
company.

Finally, the process by which we discov-
ered those vulnerabilities helped us to craft a
methodology that can be re-used to audits elec-
tronic voting systems. A formal document will
be issued with details regarding this method-
ology.

Related Work We are not the first in this field.
Affront did an initial review of the code in
2004[1] that was already pointing out issues
regarding in-memory storage of votes and vote
anonymity. The PourEVA association also took
a shot at it by documenting the code DNA[9].
Following the 25th of May bug - aka 2505bug -
Philippe Teuwen released a technical descrip-
tion of the code that led to the bug, along with
a Linux port of the code so people could test it
for themselves[10].

1

mailto:contact@quentinkaiser.be

Hack.lu 2015 • Call For Paper Submission

Preliminaries For the sake of our readers
and to help clarify the situation, we will use the
following nomenclature to designate software
that we analyzed:

• Digivote: the electronic voting systems
running on the polling stations

• MAV: voting booth software (v.9.16)

• Urn: ballot box software (v.9.15)

• PGM2: windows executable used by
polling station presidents (v.275)

• PGM3: windows executable used by
polling station presidents (v.1.66.b)

• CODI: the electronic voting systems run-
ning on government servers

We’ll also use the term EMS - Election Man-
agement System - to designate the network
infrastructure and web applications used by
the Ministry of Home Affairs to prepare and
execute the elections.

Curious readers can download all source
codes on the belgian governement website at
http://www.elections.fgov.be/index.php?id=3285&L=0

II. Polling Station

Each voter receive a magnetic card1 that has been initialized by an assessor with the help of the
machine running the Urn program. Once the voter received her card, she can go to the voting
booth where the machine running the Mav program allows her to cast her vote on the magnetic
card. She then get back to the machine running the Urn program that acts as a ballot box by
reading the card and storing the vote locally.

At the end of the election day, polling station presidents fetch all the floppy disks storing the
votes and get the votes tally of their station with the help of the PGM2. The tally is then sent
securely to the Ministry of Home Affairs with the PGM3 software. The results are received and
processed by one of the CODI web applications running on the EMS.

Magnetic Cards

As noted earlier, the Digivote system is based on magnetic cards so it seemed natural to us to first
tackle this aspect of the system. We first introduce the magnetic card and the way data are stored
on it then we go on demonstrating the different types of attacks along with the errors that make
those attacks feasible.

Card Layout The magnetic card layout, as described in figure 1, is composed of 5 different
sections:

• Token [5 bytes] The token is a string of 5 characters intended to uniquely identify the polling
station where the card was initalized.

• P [1 byte] A binary value indicating whether a vote has already been casted on the card.

• HMAC [4 byte] The HMAC of the vote generated with ISO-9797-1.

• Test [1 byte] A single character indicating the voter type (‘N‘ for belgian, ‘E‘ for european
and ‘S‘ for foreigners).

1http://en.wikipedia.org/wiki/Magnetic_stripe_card

2

Hack.lu 2015 • Call For Paper Submission

• Vote [2 + x bytes] Two characters giving the political party’s list number for which voting
was conducted and a variable number of characters corresponding to the hexadecimal
representation of the table containing preference votes for the selected list (e.g. [1,0,1,1,0,0,1,1]
become A2).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

token p HMAC test list vote

Figure 1: Magnetic card layout

Reading the card content The data being stored unencrypted on the magnetic card, it is very
easy to read the vote stored on it. There is two different ways on how to consider this, you can
consider it as a normal condition regarding what the paper vote provide (by considering your
vote written on paper as plaintext) or you consider that you need to respect the cryptographically
secure voting conditions[3, 2, 6]. In the latter, being able to read the vote would be considered as
an issue in itself.

Modifying the card content By inspecting the data stored on the magnetic card, changing
specific values can lead to users cheating the system by executing the following modifications on
the card:

• arbitrary modification of the token value, the HMAC or the vote will invalidate a card

• modifying the test byte with a value other than N, E or S will invalidate a card

• changing the test byte to a valid value (N, E or S) would elevate or drop an elector privileges
(e.g. changing from S to N would allow a european citizen residing outside Belgium to vote
for belgian federal elections).

I. Voting Booth

Authentication and Authorization Voting booth machines are protected against unauthorized
access with a set of security precautions. First, floppy disks and presidents passwords are
generated in a central and secure place. Presidents receive by mail the password as a scratch ticket
a few days before the election date. Floppy disks are in a sealed envelope which awaits at the
polling station. The president wait until the office is constituted (assessors and witnesses) before
opening the envelope. There he starts and initializes the voting booth and ballot box machines.
Floppy disks (in duplicate) are not write-protected and goes from machine to machine.

0 1 2 3 4 5 6 7 8 9

value extension

extension = 99 − (value mod 97)

Figure 2: Password checksum

2

2If you feel some kind of déjà-vu, this is because this checksum formula is nearly identical to the one used for belgian
national identification numbers.

3

Hack.lu 2015 • Call For Paper Submission

The president’s password has 10 digits. It is not compared to a predefined value, but the
program checks the validity of it by calculating a checksum as detailed in figure 2. This password
validation system is a priori not problematic, because the value of the password is then used to
derive a secret key. If the right key is not obtained, the program will not run.

Integrity Protection The Digivote system verifies the data integrity of files stored on both
initialization floppy disks and vote storage floppy disks. The data integrity check is based on a
comparison between a HMAC value stored on the floppy disk and an HMAC value of files stored
on the floppy disk. Only files that don’t starts by "BE" and that are different than "TABLE.URN",
"FE_DSK.BRK", "FE_DSK", "FE_DSK.CRP", "CTRLVOTE" and "LOG.ERR" are taken into account
during the HMAC computation. The HMAC is computed on a string that is composed of HMAC
of multiple 1024 bytes chunks read from each file, appended to each other. The key used to
compute the HMAC is stored on the floppy disk.

The code snippet in figure 3 shows how this integrity protection was flawed until they deployed
a fix for the 2014 elections.

#ifdef EL2014

for (i = 0; i < macResultLen;i++)

if(macResult[i] != wrkspc[i+16])

return (0);

return (1);

#else

for (i = 0; i < macResultLen;i++)

if(macResult[i] != wrkspc[i+16])

return (0);

else

return (1);

return (0);

#endif

Figure 3: Integrity protection code

II. Ballot Box

Ballot box machines are running the Urn program and possess two distinct purposes: magnetic
card initialization, and magnetic card reading.

Authentication and Authorization Ballot box software share the same authentication and au-
thorization code than voting booth machines described in I.

Integrity Protection Ballot box software share the same integrity protection code than voting
booth machines described in I.

Fraud Detection Although it is easy to read the vote content off a card or invalidate it by an
arbitrary modification of its content, the ability to forge valid cards, however, seems compromised
in view of the validation performed by the program running on ballot boxes.

This validation is based on three elements: the number of bytes contained on the card, a token
value, and an HMAC. During our analysis, we discovered that the values used to generate the

4

Hack.lu 2015 • Call For Paper Submission

token and the secret key used to compute the HMAC can be retrieved, leading to successful
exploitation of the system without being detected by the fraud detection.

Rogue Magnetic Card For an attacker to forge a magnetic card, it is necessary to know the
number of bytes contained in a valid card, the value of the token but also how the MAC value
is computed. Obtaining the number of bytes stored on the card is trivial and can even be done
without reading a card. Indeed, knowing how vote preferences are stored on the card (see 1) we
just need to get the maximum number of candidates for each election in progress to obtain the
total number of bytes stored.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

canton sta1 sta2 jj mm yy

Figure 4: Token computation - Initial token format

As for the token value, it is written on the card so that the ballot box can verify that the card
has been initialized in the same polling station. It is obtained in three steps:

1. An initial token is read from a configuration file stored on the floppy disk. This value is
composed of the canton number, secondary and primary number of the polling station and
the date of the vote in ddmmyy format

2. A hard-coded value, present on the voting machines and ballot boxes containing the value
0EC3ZN678LAB2DFRH1IJK9M5OPQGSTUVWXY4 is read. This value is used to generate
the token.

3. The token is generated by fetching values from the hard coded value obtained on step 2 at
indexes dependent on values coming from the initial value read on step 1.

5

Hack.lu 2015 • Call For Paper Submission

void Calcul_Jeton(char *Jeton_Etendu , char *Jeton)

{

int jj , mm ,aa;

int cant ,buv1 ,buv2 ,tmp;

char Cjj[3],Cmm[3],Caa [3];

char Ccant[4], Cbuv1[4],Cbuv2 [4];

strncpy(Ccant ,Jeton_Etendu + 3,3);

strncpy(Cbuv1 ,Jeton_Etendu + 6,2);

strncpy(Cbuv2 ,Jeton_Etendu + 8,1);

strncpy(Cjj ,Jeton_Etendu + 9,2);

strncpy(Cmm ,Jeton_Etendu + 11,2);

strncpy(Caa ,Jeton_Etendu + 13,2);

Ccant [3] = '\0';

Cbuv1 [2] = '\0';

Cbuv2 [1] = '\0';

Cjj [2] = '\0';

Cmm [2] = '\0';

Caa [2] = '\0';

cant = atoi(Ccant);

buv1 = atoi(Cbuv1);

buv2 = atoi(Cbuv2);

jj = atoi(Cjj);

mm = atoi(Cmm);

aa = atoi(Caa);

Jeton [1] = _Code[buv1 % 35];

Jeton [3] = _Code[buv2 % 35];

Jeton [2] = _Code [(jj + cant) % 35];

Jeton [0] = _Code[mm % 35];

Jeton [4] = _Code[aa % 35];

Jeton [5] = '\0';

}

Figure 5: Token generation code

Knowing that the hard coded value has not been changed between each elections since 2006,
there are two possibilities to obtain this token: read a magnetic card for the current election and
extract the token or infer the initial token by reading your electoral convocation that contains the
primary and secondary number of the polling station, along with the election date.

The latest step in forging a rogue magnetic card is computing the HMAC of our vote. Digivote
systems use IEC 9797-13 (algorithm 2, padding 2). The data on which it is applied when calculating
the HMAC is composed of the test and vote bytes. Knowning the algorithm at work, the difficulty
lies in obtaining the key used to compute the HMAC of the card.

As shown in Figure 6, the key is derived from a 10 digits value that is composed of 4 digits
from the president password (fullPassword), 4 digits from a hardcoded value (Minicodage) and
2 digits that is obtained by computing the extension of those 8 digits to get a valid checksum
(extendPassword function).

3https://en.wikipedia.org/wiki/ISO/IEC_9797-1

6

Hack.lu 2015 • Call For Paper Submission

This means that the key is derived from a password of 10 characters from which we know 6
characters. Indeed, the Minicodage variable is known and contains 4 characters while we know the
algorithm to obtain the last two digits of this password. Which leaves us with 104 possible values
to enumerate to obtain this password. The attentive reader will also see how they implemented
some kind of security-through-obscurity by modifying the Minicodage value for the 2014 elections.

#ifdef EL2014

#define MINI_PWD "6987"

#define MINI_POS "2368"

#endif

#ifdef EL2014

char Minicodage [] = MINI_PWD;

#else

char Minicodage [] = "6870";

#endif

// ...

extern char gszMinipassword [12];

//...

#ifdef EL2014

CMinipassword [0] = fullPassword[MINI_POS [0] -49]; //it's 50 - 49 (1)

CMinipassword [1] = fullPassword[MINI_POS [1] -49]; //it's 51 - 49 (2)

CMinipassword [2] = fullPassword[MINI_POS [2] -49]; //it's 54 - 49 (5)

CMinipassword [3] = fullPassword[MINI_POS [3] -49]; //it's 56 - 49 (7)

#else

CMinipassword [0] = fullPassword [0];

CMinipassword [1] = fullPassword [1];

CMinipassword [2] = fullPassword [3];

CMinipassword [3] = fullPassword [7];

#endif

gszMinipassword [4] = 0x00;

strcat(gszMinipassword ,Minicodage);

//...

extendPassword(fullPasswordMini ,gszMinipassword);

//...

computeKeyFromPassword (decryptedMacKeyMini , fullPasswordMini);

Figure 6: Key derivation code

In possession of a magnetic card, we can read the vote and HMAC values. Knowing these
values, we can use a brute force attack to obtain the secret key with the following process:

1. enumerate the 104 possible combinations of password

2. derive the key for each obtained password

3. compute the vote’s HMAC with the derived key

4. if for a derived key, the HMAC matches the one on the card, we found the key

We are now in posession of all the necessary elements to forge a rogue magnetic card.

Secure Storage Once a voter casted his vote on a card at the voting booth, he can insert his card
in the reader connected to the ballot box machine. This machine will read the magnetic card
content, validate it, write the vote in a file and store the card in a sealed box. As long as the
election is in progress, all votes are stored, encrypted, in a temporary file. When the president

7

Hack.lu 2015 • Call For Paper Submission

close the vote, the content of this temporary file is decrypted then encrypted with AES and copied
into a new file. The temporary file is then deleted.

Temporary file encryption Votes stored on the floppy disk temporary file are encrypted with
a XOR cipher that use the pzPassword variable as filter. Implementation details can be found on
figure 7 and 8.

void Encrypt_Decrypt(char *pzInputData , char *pzPassword , unsigned int iSize)

{

unsigned int i, iKeySize;

iKeySize = strlen(pzPassword);

for (i= 0; i < iSize; i++)

{

pzInputData[i] ^= pzPassword[i % iKeySize];

}

pzInputData[iSize] = 0x00;

}

Figure 7: Temporary file encryption

The XOR cipher filter is made out of seven bytes from the vote’s position in the file, four bytes
from Minicodage and four bytes from the president’s password. Knowing the position of the vote
and the value of Minicodage, we have two possibilities at our disposal to get the remaining four
bytes of this filter:

• perform a brute force attack by listing 104 possibilities, assuming it is possible to determine
whether the decrypted content is valid or not

• since the missing four bytes correspond to the four bytes obtained by brute force in the
attack on the magnetic card, we just use this attack to get the four missing bytes

Knowing the filter used for XOR cipher we are able to add and edit the contents of registered
votes in the temporary file.

Decrypting file content On polling station closing, the temporary file content is decrypted by
re-applying the XOR cipher, then encrypted with AES and stored in a new file. At first glance,
deciphering the file content seems impossible. To do that, an attacker must get access to the secret
key used to encrypt the file.

This key is stored, along with the initialization vector, on a file named floppy.be. This file resides
on the same floppy disk than the encrypted votes. The key is stored on the first 16 bytes of the file
and the initialization vector is stored on bytes 16 to 31. To protect this key and initialization vector,
the programs encrypt the floppy.be file content with AES, by using a secret key derived from the
president’s password and a null IV.

As we already know, it is possible to recover six characters out of ten of the president’s
password via an attack targeting the magnetic card. It would thus be possible to list the 104

possible combinations to obtain the four missing characters, deriving each combination and apply
the decryption process with each obtained key.

The format of the lines in the file being known, we consider to be possible to verify that the
content matches the decrypted format (for example, ensuring that the type of voting of each line
is N, S or E). If it is possible to perform this validation, we will have not only recovered all the

8

Hack.lu 2015 • Call For Paper Submission

void Generate_Password(char *pzPassword , long Position , boolean bIndic)

{

long E_Position;

char szPos [8];

// compute the position in the file

if(bIndic)

{

E_Position = (long)_E_TABLE;

E_Position +=(long)((long)((long)C_VOTE_MAX_BYTE + 5L) * (long)Position);

}

else

E_Position = Position;

sprintf(szPos ,"%07ld",E_Position);

if(szPos [0] == '-')

szPos [0] = '0';

pzPassword [0] = CMinipassword [0];

pzPassword [1] = szPos [3];

pzPassword [2] = CMinipassword [2];

pzPassword [3] = szPos [4];

pzPassword [4] = CMinipassword [7];

pzPassword [5] = szPos [5];

pzPassword [6] = CMinipassword [4];

pzPassword [7] = szPos [6];

pzPassword [8] = szPos [0];

pzPassword [9] = CMinipassword [1];

pzPassword [10] = CMinipassword [3];

pzPassword [11] = szPos [2];

pzPassword [12] = CMinipassword [6];

pzPassword [13] = szPos [1];

pzPassword [14] = CMinipassword [5];

pzPassword [15] = 0x00;

}

Figure 8: Temporary file encryption

votes in the file but also the administrator password of the polling station president. The complete
process is described in figure 9.

9

Hack.lu 2015 • Call For Paper Submission

Figure 9: Vote decryption process

III. PGM2 & PGM3

Overview Totalization software asks the president to encode his password, then read the floppy
disk content and produces a result that is printed locally.

Secure Transmission

III. Election Management System

When we started our analysis, we have always been convinced that addressing the infrastructure
used to send and harvest votes would have been a difficult exercise, entirely based on supposi-
tion. Fortunately, Stesud provided the complete technical documentation of this infrastructure
(networking maps, description of services and systems). The file was in fact well buried in the
public archive as our command log from Figure 10 confirms.

10

Hack.lu 2015 • Call For Paper Submission

$ cd /tmp

$ wget http ://www.elections.fgov.be/fileadmin/user_upload /\

Elections2014/FR/Electeurs/en_pratique/soft/codi.zip

$ unzip codi.zip

$ cd Codi

$ cd PGM2\ -\ 275/

$ unzip PgmRef.zip

$ cd ZCOCKPIT

$ unzip t15M

$ libreoffice doctechnique01150842.doc

Figure 10: Technical documentation digging

One can assume that the presence of this file is an unfortunate error from Stesud. However, no
changes have been applied to this archive since september 2014 when we reported this information
leak.

Secure Transmission Once the encrypted file written on the floppy disk, this disk is transmitted
to the township office so that its content is decrypted and integrated to the results of the canton
with the PGM2 software. Once all canton’s votes have been encoded, the software generates a
PDF file containing a summary of the results. This pdf file is signed by the president with his
electronic identity card. This pdf file is then transmitted via PGM3 to the Ministry of Internal
Affairs infrastructure. Note that the inner workings of PGM2 and PGM3 is pure speculation, based
on the content of user guides provided by Stésud.

Services The Pgm programs were developed with Centura and are used on PCs main offices.

• Pgm1: constituency office and college, introduction and validation of lists

• Pgm2: introductions of results, calculation and generation of minutes by main offices

• Pgm3: introduction of results and generation of minutes by cantons electronic offices

• Pgm5: results comparison

The Web applications are developed in php (most with Zend), running on the Ministry of
Internal Affairs servers.

• Web1: encoding of lists by political parties, voting offices by municipalities, cantons offices
coordinated consultations.

• Web2: results recording by foreign embassies

• Web3: internal intranet for FPS Interior with election results

• Web4: cockpit to monitor operations (logging facility)

• Web5: public web server where results are published

The Loc programs have been developed by Centura and run on the Ministry of Internal Affairs
servers.

• Loc1: receiving files from the main offices and transfer to Loc2

11

Hack.lu 2015 • Call For Paper Submission

• Loc2: checking files received from Loc2, database loading, calculation and transfer of results
to Loc3, consultation of data stored in the Loc2 database.

• Loc3: transfer of results to partners like the press.

Network As it can be seen on the network maps in figure 11, clients can access the servers both
via the Internet and Publilink networks.

Figure 11: Network map

For information, "PubliLink is designed on a private and completely locked network managed
by Belgacom for various governments services, Belfius Bank and other public service providers."

One can decently ask the following questions about this network:

• Why provide the opportunity for PGM1 and PGM2 clients to connect to the vote infras-
tructure via the Internet while Publilink seems to be a much safer and secure solution
?

• Why is the backup infrastructure hosted by a private provider?

• What guarantees regarding network security can Stésud and the Ministry of Internal Affairs
can provide? Does the network has been audited?

12

Hack.lu 2015 • Call For Paper Submission

Web Application (In)Security After going up the chain to the infrastructure of the Ministry of
Internal Affairs, we looked at the applications that enable the entire electoral process to take place.
These web applications receive, compute and redistribute voting results for all Belgian voters.
Whether you voted on paper or electronically, your vote was recorded via these applications. Be
aware that only Web2 sources are available on the website of the Ministry of Internal Affairs. This
means that seven out of eight applications used in the receipt, calculation and dissemination of
the votes are not provided to citizens even if they take an equally important part in the electoral
process.

During our analysis, we found the following kind of vulnerabilities in Web2:

• Arbitrary file download

• Sensitive information disclosure (private keys)

• Cleartext storage of password

All those findings are documented in our online article4 and were responsibly disclosed to
Stesud. We chose not to explore those findings in this paper for legibility concerns.

IV. Conclusion

Our analysis proved that the Digivote system do not provide new guarantees in regard to paper
voting. It is possible to create rogue magnetic card to make ballot stuffing or vote buying and it is
also possible to manipulate the votes when stored locally. Even if we covered a good part of the
software running on polling stations, many gray areas remain, mainly related to web applications
behind the Election Management System and the network on which they run.

Furthermore, we discovered multiple vulnerabilities affecting one of the many web applications
running the EMS; which lead us to think that many more are yet to be discovered. We hope that
the belgian Ministry of Home Affairs will take the necessary steps to ensure the security of their
infrastructure before the next election take place.

An electronic voting system, when properly designed and implemented, is an effective tool
to address the challenges of democratic elections. Unfortunately, the lack of control, means and
expertise of the Ministry of Internal Affairs led it to renew this system beyond its limits. Renewal
that ultimately led to a total loss of confidence from citizens towards these systems.

V. Future Work

Must evoting stay in place, we think this kind of audit should automatically be performed by
groups of citizens possessing the necessary skills. To help this process taking place, we are
currently devising a methodology to audit electronic voting systems that try to capture all the
threats that those systems faces from network tampering to hardware and web applications
hacking. Once we publish this methodology, we will likely start to look at other electronic systems
deployed in countries around the world. More localy, we started to look at the Smartmatic system
which is also deployed in Belgium.

4http://qkaiser.github.io/analysis/2015/05/12/how-not-to-build-an-evoting-system/

13

Hack.lu 2015 • Call For Paper Submission

References

[1] Affront. Affront analysis of 2003/2004 versions of digivote. Affront, 2004.

[2] D. Wagner C. Karlof, N. Sastry. Cryptographic voting protocols: A systems perspective. 14th
USENIX Security Symposium.

[3] Internet Policy Institute. Voting systems design criteria. report of the national workshop on
internet voting: Issues and research agenda. March 2000.

[4] LaLibre.be. Le parlement wallon se prononce en faveur de la fin du vote électronique en
belgique, June 2015. .

[5] Medor Mag. Le jour où la belgique a bugué., May 2015. .

[6] Oladiran Tayo Arulogun Olayemi Mikail Olaniyi, Adeoye Oludotun and Elijah Olusayo
Omidior. Design of secure electronic voting system using multifactor authentication and
cryptographic hash functions. International Journal of Computer and Information Technology,
November 2013.

[7] PourEVA. Comment frauder lors d’une élection communale sans trop de connaissances
informatiques ?, November 2006. .

[8] PourEVA. Victoire de la transparence au conseil d’etat, May 2011. .

[9] PourEVA. Généalogie du code source des systèmes digivote et jites, June 2014. .

[10] PourEVA. On vous dit tout ce que l’on sait du bug2505, June 2014. .

14

http://www.lalibre.be/actu/belgique/le-parlement-wallon-se-prononce-en-faveur-de-la-fin-du-vote-electronique-en-belgique-556f415835709a87ac6d1627
https://medor.coop/fr/bug/
http://www.poureva.be/spip.php?article384
http://www.poureva.be/spip.php?article139
http://www.poureva.be/spip.php?article851
http://www.poureva.be/spip.php?article853

	Introduction
	Polling Station
	Voting Booth
	Ballot Box
	PGM2 & PGM3

	Election Management System
	Conclusion
	Future Work

